Part Number Hot Search : 
322005P BTA12 04N60C RCW0603 MRF6P TIL196 2SC40 CR24771
Product Description
Full Text Search
 

To Download AD8597ACPZ-R2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599
FEATURES
Low noise: 1.1 nV/Hz at 1 kHz Low distortion: -120 dB THD @ 1 kHz Input noise, 0.1 Hz to 10 Hz: <76 nV p-p Slew rate: 14 V/s Wide bandwidth: 10 MHz Supply current: 4.8 mA/amp typical Low offset voltage: 10 V typical CMRR: 120 dB Unity-gain stable 15 V operation
PIN CONFIGURATIONS
NC 1 -IN 2 +IN 3
8
NC V+ OUT
06274-060
06274-054
06274-061
AD8597
7 6 5
TOP VIEW V- 4 (Not to Scale)
NC
NC = NO CONNECT
Figure 1. AD8597 8-Lead SOIC (R-8)
NC 1 -IN 2 +IN 3 V- 4
PIN 1 INDICATOR
8 NC 7 V+ 6 OUT 5 NC
AD8597
TOP VIEW
APPLICATIONS
Professional audio preamplifiers ATE/precision testers Imaging systems Medical/physiological measurements Precision detectors/instruments Precision data conversion
NOTES 1. NC = NO CONNECT. 2. PIN 4 AND THE EXPOSED PAD MUST BE CONNECTED TO V-.
Figure 2. AD8597 8-Lead LFCSP (CP-8-2)
OUT A 1 -IN A 2 +IN A 3
8
+V OUT B -IN B +IN B
AD8599
7 6 5
TOP VIEW -V 4 (Not to Scale)
Figure 3. AD8599 8-Lead SOIC (R-8)
GENERAL DESCRIPTION
The AD8597/AD8599 are very low noise, low distortion operational amplifiers ideal for use as preamplifiers. The low noise of 1.1 nV/Hz and low harmonic distortion of -120 dB (or better) at audio bandwidths give the AD8597/AD8599 the wide dynamic range necessary for preamplifiers in audio, medical, and instrumentation applications. The excellent slew rate of 14 V/s and 10 MHz gain bandwidth make them highly suitable for medical applications. The low distortion and fast settling time make them ideal for buffering of high resolution data converters. The AD8597 is available in 8-lead SOIC and LFCSP packages, while the AD8599 is available in an 8-lead SOIC package. They are both specified over a -40C to +125C temperature range. The AD8597 and AD8599 are members of a growing series of low noise op amps offered by Analog Devices, Inc., (see Table 1).
Table 1. Low Noise Op Amps
Voltage Noise Single Dual Quad 0.9 nV AD797 1.1 nV AD8597 AD8599 1.8 nV 2.8 nV AD8675 AD8676 3.2 nV OP27 3.8 nV AD8671 AD8672 AD8674
ADA4004-4
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2007-2008 Analog Devices, Inc. All rights reserved.
AD8597/AD8599 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications ....................................................................................... 1 Pin Configurations ........................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 Power Sequencing ........................................................................ 5 ESD Caution...................................................................................5 Typical Performance Characteristics ..............................................6 Functional Operation..................................................................... 15 Input Voltage Range ................................................................... 15 Output Phase Reversal ............................................................... 15 Noise and Source Impedance Considerations ........................... 15 Outline Dimensions ....................................................................... 17 Ordering Guide .......................................................................... 17
REVISION HISTORY
10/08--Rev.A to Rev. B Added AD8597 ................................................................... Universal Added LFCSP_VD ............................................................. Universal Added Table 1.................................................................................... 1 Changes to Specifications Section .................................................. 3 Changes to Absolute Maximum Ratings Section ......................... 5 Changes to Typical Performance Characteristics Section ........... 6 Added Figure 12 and Figure 15....................................................... 7 Added Figure 18 and Figure 19....................................................... 8 Added Figure 30 and Figure 33..................................................... 10 Added Figure 34 to Figure 38........................................................ 11 Added Figure 42 and Figure 45..................................................... 12 Added Figure 52, Figure 55, Figure 57......................................... 14 Added Functional Operation Section .......................................... 15 Added Figure 58.............................................................................. 15 Updated Outline Dimensions ....................................................... 17 Changes to Ordering Guide .......................................................... 17 4/07--Rev. 0 to Rev. A Updated Layout .................................................................................5 Changes to Figure 45 Caption ...................................................... 12 Added Figure 48 ............................................................................. 12 Changes to Figure 51 Caption ...................................................... 13 2/07--Revision 0: Initial Version
Rev. B | Page 2 of 20
AD8597/AD8599 SPECIFICATIONS
VSY = 5 V, VCM = 0 V, VO = 0 V, TA = 25C, unless otherwise specified. Table 2.
Parameter INPUT CHARACTERISTICS Offset Voltage Symbol VOS -40C TA +125C Offset Voltage Drift Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance Differential Capacitance Common-Mode Capacitance OUTPUT CHARACTERISTICS Output Voltage High VOS/T IB IOS -40C TA +125C IVR CMRR AVO -2.0 V VCM +2.0 V -40C TA +125C RL 600 , VO = -11 V to +11 V -40C TA +125C -2.0 120 105 105 100 135 110 -40C TA +125C -40C TA +125C 65 0.8 40 Conditions Min Typ 15 Max 120 180 2.2 210 340 250 340 +2.0 Unit V V V/C nA nA nA nA V dB dB dB dB pF pF V V V V V V V V mA dB dB mA mA V/s V/s s MHz Degrees nV p-p nV/Hz nV/Hz pA/Hz pA/Hz pA/Hz pA/Hz dB dB
CDIFF CCM VOH RL = 600 -40C TA +125C RL = 2 k -40C TA +125C RL = 600 -40C TA +125C RL = 2 k -40C TA +125C At 1 MHz, AV = 1 VSY = 18 V to 4.5 V -40C TA +125C -40C TA +125C 120 118 3.5 3.3 3.7 3.5
15.4 5.5 3.7 3.8 -3.6 -3.7 52 5 140 4.8 5.5 6.5 -3.4 -3.3 -3.5 -3.4
Output Voltage Low
VOL
Output Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Correlated Current Noise Uncorrelated Current Noise Total Harmonic Distortion + Noise Channel Separation
ISC ZOUT PSRR ISY
SR tS GBP M en p-p en
AV = -1, RL = 2 k AV = 1, RL = 2 k To 0.01%, step = 10 V
14 14 2 10 60 76 1.07 2.0 4.2 2.4 5.2 -120 -120
THD + N CS
0.1 Hz to 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz G = 1, RL 1 k, f = 1 kHz, VRMS = 1 V f = 10 kHz
Rev. B | Page 3 of 20
1.15 1.5
AD8597/AD8599
VS = 15 V, VCM = 0 V, VO = 0 V, TA = +25C, unless otherwise specified. Table 3.
Parameter INPUT CHARACTERISTICS Offset Voltage Symbol VOS -40C TA +125C Offset Voltage Drift Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance Differential Capacitance Common-Mode Capacitance OUTPUT CHARACTERISTICS Output Voltage High VOS/T IB -40C TA +125C IOS -40C TA +125C IVR CMRR AVO -12.5 V VCM +12.5 V -40C TA +125C RL 600 , VO = -11 V to +11 V -40C TA +125C -12.5 120 115 110 106 135 116 50 -40C TA +125C 0.8 25 Conditions Min Typ 10 Max 120 180 2.2 200 300 200 300 +12.5 Unit V V V/C nA nA nA nA V dB dB dB dB pF pF V V V V V V V V mA dB dB mA mA V/s V/s s MHz Degrees
nV p-p
CDIFF CCM VOH RL = 600 -40C TA +125C RL = 2 k -40C TA +125C RL = 600 -40C TA +125C RL = 2 k -40C TA +125C At 1 MHz, AV = 1 VSY = 18 V to 4.5 V -40C TA +125C -40C TA +125C 120 118 13.1 12.8 13.5 13.2
12.1 5.1 13.4 13.7 -13.2 -13.5 52 5 140 5.0 5.7 6.75 -12.9 -12.8 -13.4 -13.3
Output Voltage Low
VOL
Output Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Correlated Current Noise Uncorrelated Current Noise Total Harmonic Distortion + Noise Channel Separation
ISC ZOUT PSRR ISY
SR ts GBP M en p-p en
AV = -1, RL = 2 k AV = 1, RL = 2 k To 0.01%, step = 10 V
16 15 2 10 65 76 1.07 1.9 4.3 2.3 5.3 -120 -120
THD + N CS
0.1 Hz to 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz G = 1, RL 1 k, f = 1 kHz, VRMS = 3 V f = 10 kHz
Rev. B | Page 4 of 20
1.15 1.5
nV/Hz nV/Hz pA/Hz pA/Hz pA/Hz pA/Hz dB dB
AD8597/AD8599 ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit to GND Storage Temperature Range Operating Temperature Range Lead Temperature Range (Soldering 60 sec) Junction Temperature
1
THERMAL RESISTANCE
Rating 18 V -V VIN +V 1 V Indefinite -65C to +150C -40C to +125C 300C 150C
JA is specified with the device soldered on a circuit board with its exposed paddle soldered to a pad (if applicable) on a 4-layer JEDEC standard PCB with zero air flow. Table 5.
Package Type 8-Lead LFCSP_VD (CP-8-2) 8-Lead SOIC (R-8) (AD8597) 8-Lead SOIC (R-8) (AD8599) JA 78 140 120 JC 20 39 36 Unit C/W C/W C/W
If the differential input voltage exceeds 1 V, the current should be limited to 5 mA.
POWER SEQUENCING
The op amp supplies should be applied simultaneously. The op amp supplies should be stable before any input signals are applied. In any case, the input current must be limited to 5 mA.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
Rev. B | Page 5 of 20
AD8597/AD8599 TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25C, unless otherwise noted.
70 60
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
50 40 30 20 10
AD8599 MEAN = 8.23 STDEV = 24.47 MIN = -72.62 MAX = 62.09 VSY = 5V
70 60 50 40 30 20 10
AD8599 MEAN = 7.91 STDEV = 21.89 MIN = -63.02 MAX = 57.5 VSY = 15V
Figure 4. Input Offset Voltage Distribution
60
45 40 35 30 25 20 15 10 5
06274-001
Figure 7. Input Offset Voltage Distribution
50
NUMBER OF AMPLIFIERS
40
30
20
10
NUMBER OF AMPLIFIERS
AD8599 MEAN = 0.346 STDEV = 0.218 MIN = 0.010 MAX = 1.155 VSY = 5V
AD8599 MEAN = 0.765 STDEV = 0.234 MIN = 0.338 MAX = 1.709 VSY = 15V
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (V)
2.2 2.4
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (V)
2.2 2.4
Figure 5. TCVOS Distribution, -40C TA +125C
Figure 8. TCVOS Distribution, -40C TA +125C
60
50
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
40
AD8599 MEAN = 0.461 STDEV = 0.245 MIN = 0.026 MAX = 1.26 VSY = 5V
60
50
40
AD8599 MEAN = 0.342 STDEV = 0.221 MIN = 0.013 MAX = 1.239 VSY = 15V
30
30
20
20
10
10
06274-006
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (V)
2.2 2.4
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (V)
2.2 2.4
Figure 6. TCVOS Distribution, -40C TA +85C
Figure 9. TCVOS Distribution, -40C TA +85C
Rev. B | Page 6 of 20
06274-005
0
0
06274-007
06274-004
0
0
06274-002
0 -75 -65 -55 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 VOS (V)
0 -75 -65 -55 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 VOS (V)
AD8597/AD8599
100 75 50 25
VOS (V)
AD8599 VSY = 5V
100 75 50 25
VOS (V)
AD8599 VSY = 15V
0 -25 -50 -75
06274-009
0 -25 -50 -75
06274-010 06274-063 06274-012
-100 -5.0
-2.5
0 VCM (V)
2.5
5.0
-100 -15
-10
-5
0 VCM (V)
5
10
15
Figure 10. Offset Voltage vs. VCM
350 300 250 200 150 AD8599 VSY = 5V VCM = 0V
Figure 13. Offset Voltage vs. VCM
350 300 250 200 150
IB (nA)
AD8599 VSY = 15V VCM = 0V
IB (nA)
100 50 0 -50
100 50 0 -50
-100 -150 -25 0 25 50 TEMPERATURE (C) 75 100 125
06274-011
-100 -150 -200 -50 -25 0 25 50 TEMPERATURE (C) 75 100 125
-200 -50
Figure 11. Input Bias Current vs. Temperature
50 AD8597 40 30 20
VOS (V)
Figure 14. Input Bias Current vs. Temperature
350 300 250 200 150 100
IB (nA)
AD8597 VSY = 15V
TA = -40C TA = +25C TA = +85C TA = +125C
10 0 -10 -20 5V -30 -40 -50 -50 -25 0 25 50 75 100 125 150
06274-062
50 0 -50 -100 -150 -200 -250 -300 -350 -12 -10 -8 -6 -4 -2
15V
0 VCM (V)
2
4
6
8
10
12
TEMPERATURE (C)
Figure 12. Input Offset Voltage vs. Temperature
Figure 15. Input Bias Current vs. Temperature
Rev. B | Page 7 of 20
AD8597/AD8599
80 AD8599 70 60 50 50 IOS (nA) 100 150 AD8597
IB (nA)
40 IOS @ VSY = 5V 30 20 IOS @ VSY = 15V 10
06274-013
0
15V 5V
-50
-100
06274-065
0 -50
-25
0
25 50 TEMPERATURE (C)
75
100
125
-150 -50
-25
0
25
50
75
100
125
TEMPERATURE (C)
Figure 16. Input Offset Current vs. Temperature
114 112 110 AD8599 VSY = 5V 118 RL = 2k, VO = 2V
AVO (dB)
Figure 19. Input Offset Current vs. Temperature
120 AD8599 VSY = 15V RL = 2k, VO = 11V
AVO (dB)
108 106 104 RL = 600, VO = 2V
116 RL = 600, VO = 11V 114
112 102 100 -50 110 -50
06274-015
-25
0
25 50 75 TEMPERATURE (C)
100
125
150
-25
0
25 50 75 TEMPERATURE (C)
100
125
150
Figure 17. Large Signal Voltage Gain vs. Temperature
8 7 TA = +125C 6 5 TA = +85C TA = +25C
350 300 250 200 150 100
Figure 20. Large Signal Voltage Gain vs. Temperature
AD8597
AD8599 VSY = 15V
TA = -40C
ISY (mA)
4 3 2
IB (nA)
TA = -40C
50 0 -50 -100 -150 -200 -250 -300 -8 -6 -4 -350 -12 -10
TA = +25C TA = +85C
TA = +125C
0
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 VSY (V)
-2
0 2 VCM (V)
4
6
8
10
12
Figure 18. Supply Current vs. Supply Voltage
Figure 21. Input Bias Current vs. VCM
Rev. B | Page 8 of 20
06274-014
0
06274-064
1
06274-016
AD8597/AD8599
80 60 40 20 0 -20 -40 -60
06274-017
AD8599 VSY = 5V ISINK
80 60 40 20 0 -20 -40 -60 ISINK
AD8599 VSY = 15V
OUTPUT CURRENT (mA)
ISOURCE
OUTPUT CURRENT (mA)
ISOURCE
-25
0
75 25 50 TEMPERATURE (C)
100
125
150
-25
0
75 25 50 TEMPERATURE (C)
100
125
150
Figure 22. ISC vs. Temperature
10k 10k OUTPUT SATURATION VOLTAGE (mV)
Figure 25. ISC vs. Temperature
OUTPUT SATURATION VOLTAGE (mV)
AD8599 VSY = 5V
AD8599 VSY = 15V
ISINK 1k ISOURCE
ISINK 1k ISOURCE
06274-021
0.01
0.1 IL (mA)
1
10
100
0.01
0.1 IL (mA)
1
10
100
Figure 23. Output Saturation Voltage vs. Current Load
2.5 AD8599 VSY = 5V 2.0
2.0 2.5
Figure 26. Output Saturation Voltage vs. Current Load
AD8599 VSY = 15V
VCC - VOH @ RL = 600 VCC - VOH (V)
1.5
VCC - VOH (V)
VCC - VOH @ RL = 600
1.5 VCC - VOH @ RL = 2k 1.0
1.0
VCC - VOH @ RL = 2k
0.5
0.5
06274-027
-25
0
25 50 75 TEMPERATURE (C)
100
125
150
-25
0
75 25 50 TEMPERATURE (C)
100
125
150
Figure 24. Output Saturation Voltage vs. Temperature
Figure 27. Output Saturation Voltage vs. Temperature
Rev. B | Page 9 of 20
06274-029
0 -50
0 -50
06274-022
100 0.001
100 0.001
06274-018
-80 -50
-80 -50
AD8597/AD8599
0 AD8599 VSY = 5V -0.5
0 AD8599 VSY = 15V -0.5
VEE - VOL (V)
-1.0 VEE - VOL @ RL = 2k -1.5
VEE - VOL (V)
-1.0 VEE - VOL @ RL = 2k -1.5
VEE - VOL @ RL = 600
-2.0
-2.0
VEE - VOL @ RL = 600
06274-028
-25
0
75 25 50 TEMPERATURE (C)
100
125
150
-25
0
25 50 75 TEMPERATURE (C)
100
125
150
Figure 28. Output Saturation Voltage vs. Temperature
Figure 31. Output Saturation Voltage vs. Temperature
-13.0 VOL @ RL = 600
15.0 14.8 14.6 AD8599 VSY = 15V
-13.5 VOL @ RL = 2k
VOH (V)
14.4 14.2
VOL (V)
-14.0
14.0 13.8 13.6 VOH @ RL = 2k
-14.5
13.4
AD8599 VSY = 15V 0 50 TEMPERATURE (C) 100 150
06274-032
VOH @ RL = 600
13.2 0 50 TEMPERATURE (C) 100 150
06274-031 06274-067
-15.0 -50
13.0 -50
Figure 29. Output Voltage Low vs. Temperature
100 80
Figure 32. Output Voltage High vs. Temperature
120 100
GAIN (dB) AND PHASE (Degrees)
GAIN (dB) AND PHASE (Degrees)
60 40 20 0 -20 -40 -60 -80 -100 10 AD8597 VSY = 5V RL = 2k 100 1k FREQUENCY (kHz) 10k 50k CL = 200pF CL = 20pF
80 60 40 20 0 -20 -40 -60 -80 1 10 100 1k 10k 50k FREQUENCY (kHz) CL = 200pF AD8597 VSY = 15V RL = 2k CL = 20pF
Figure 30. Gain and Phase vs. Frequency
06274-066
Figure 33. Gain and Phase vs. Frequency
Rev. B | Page 10 of 20
06274-030
-2.5 -50
-2.5 -50
AD8597/AD8599
50 40 30 20
GAIN (dB)
50 AV = 100 40 30 AV = 10 20
GAIN (dB)
AV = 100
AV = 10
10 0 -10 -20
06274-068
10 0 -10 -20
06274-071
AV = 1
AV = 1
-30 -40 1
AD8597 VSY = 5V RL = 2k 10 100 1k 10k 50k
-30 -40 1
AD8597 VSY = 15V RL = 2k 10 100 1k 10k 50k
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 34. Closed-Loop Gain vs. Frequency
100 AV = -100 10 AV = -10
ZOUT () ZOUT ()
Figure 37. Closed-Loop Gain vs. Frequency
100 AV = -100 10 AV = -10
AV = +1 1
AV = +1 1
0.1
06274-069
0.1 AD8597 VSY = 5V AD8597 VSY = 15V 0.01 10 100 1k FREQUENCY (kHz) 10k
06274-072
0.01 10
100
1k FREQUENCY (kHz)
10k
100k
100k
Figure 35. Closed-Loop Output Impedance vs. Frequency
110 100 100 90 80
CMRR (dB)
Figure 38. Closed-Loop Output Impedance vs. Frequency
120 AD8599 5V VSY 15V PSRR+ (dB) PSRR- (dB)
80
PSRR (dB)
06274-070
70 60 50 40 30 20 1 10 100 FREQUENCY (kHz) 1k 10k AD8597 VSY = 5V, 15V
60 40 20 0 -20 100
1k
10k 100k FREQUENCY (Hz)
1M
10M
Figure 36. Common-Mode Rejection Ratio vs. Frequency
Figure 39. Power Supply Rejection Ratio vs. Frequency
Rev. B | Page 11 of 20
06274-038
AD8597/AD8599
90 80 70 60 50 40 30 20 10
06274-039
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
AD8599 MEAN = 1.30 STDEV = 0.09 MIN = 1.1 MAX = 1.5 5V VSY 15V
600
500
400
AD8599 MEAN = 1.07 STDEV = 0.02 MIN = 1.05 MAX = 1.15 5V VSY 15V
300
200
100
1.0
1.1
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 VOLTAGE NOISE DENSITY (nV/ Hz)
2.0
0.95
0.98
1.01
1.04
1.07
1.10
1.13
1.16
1.19
VOLTAGE NOISE DENSITY (nV/ Hz)
Figure 40. Voltage Noise Density @ 10 Hz
100 AD8599 5V VSY 15V
VOLTAGE NOISE DENSITY (nV/ Hz)
Figure 43. Voltage Noise Density @ 1 kHz
100 AD8599 5V VSY 15V
CURRTENT NOISE DENSITY (pA/ Hz)
10
10
1
1
06274-041
1
10
100 FREQUENCY (Hz)
1k
1
10
100 FREQUENCY (Hz)
1k
Figure 41. Voltage Noise Density vs. Frequency
Figure 44. Current Noise Density vs. Frequency
1
1
0.1 RL = 600 0.01 AD8597 VSY = 5V AV = +1 0.001
06274-073
0.1
THD + N (%)
THD + N (%)
0.01 AD8597 VSY = 15V AV = +1 0.001 RL = 600
0.0001 0.001
RL = 100k 0.01 0.1 V rms (V) 1 10
0.0001 0.001
RL = 100k 0.01 0.1 V rms (V) 1 10
Figure 42. THD + N vs. Amplitude
Figure 45. THD + N vs. Amplitude
Rev. B | Page 12 of 20
06274-074
06274-042
0.1
0.1
06274-040
0
0
AD8597/AD8599
0.1 AD8599 VSY = 15V VIN = 3V rms VIN = 5V rms VIN = 7V rms 0.01
THD + N (%)
0.1 AD8599 VSY = 15V VIN = 3V rms
0.01
THD + N (%)
0.001
0.001
RL = 600
RL = 2k 0.0001 10 0.0001 10
06274-044
100
1k FREQUENCY (Hz)
10k
100k
100
1k FREQUENCY (Hz)
10k
100k
Figure 46. THD + N vs. Frequency
Figure 49. THD + N vs. Frequency
20 AD8599 15 10
AMPLITUDE (V) AMPLITUDE (V)
20 AD8599 15 10 5 0 -5 -10 -15
06274-047
5 0 -5 -10 -15 -20 -8.6
VSY = 15V VIN = 20V p-p AV = 1 RF = 1k RL = 2k VERTICAL AXIS = 5V/DIV HORIZONTAL AXIS = 4s/DIV
VSY = 15V VIN = 20V p-p AV = -1 RF = 2k RS = 2k CL = 0pF VERTICAL AXIS = 5V/DIV HORIZONTAL AXIS = 4s/DIV
06274-048
-4.6
-0.6
3.4
7.4
11.4 15.4 TIME (s)
19.4
23.4
27.4
31.4
-20 -8.6
-4.6
-0.6
3.4
7.4
11.4 15.4 TIME (s)
19.4
23.4
27.4
31.4
Figure 47. Large Signal Response
Figure 50. Large Signal Response
80 AD8599 60 40
AMPLITUDE (mV)
45 40 35 AD8599 5V VSY 15V AV = 1 RL = 10k
20 0 -20 -40 -60 -80 -800 -400 VSY = 15V, 5V VIN = 100mV p-p AV = 1 EXTERNAL CL = 100pF EXTERNAL RL = 10k VERTICAL AXIS = 20mV/DIV HORIZONTAL AXIS = 400ns/DIV
06274-046
OVERSHOOT (%)
30 25 20 15 10 5 100 CAPACITANCE (pF) 1k
06274-049
0
400
800
1200 1600 2000 2400 2800 3200 TIME (ns)
0 10
Figure 48. Small Signal Response
Figure 51. Overshoot vs. Capacitance
Rev. B | Page 13 of 20
06274-043
AD8597/AD8599
45 40 35 AD8597 VSY = 5V 45 40 35 OS- AD8597 VSY = 15V
OVERSHOOT (%)
25 20 OS- 15 OS+ 10
06247-077
OVERSHOOT (%)
30
30 25 20 15 10 5 0 10 OS+
06247-078
5 0 10
100 CAPACITANCE (pF)
1k
100 CAPACITANCE (pF)
1k
Figure 52. Overshoot vs. Capacitive Load
0 -20 CHANNEL SEPARATION (dB) -40 -60 -80 -100 -120 -140
06274-050
Figure 55. Overshoot vs. Capacitive Load
15.0 AD8599
AD8599 VSY = 15V AV = 100 RL = 1k VIN = 10V p-p VIN = 20V p-p
12.5
ISY (mA)
10.0
VSY = 15V VSY = 5V
7.5
1k
10k FREQUENCY (Hz)
100k
1M
-25
0
25 50 TEMPERATURE (C)
75
100
125
Figure 53. Channel Separation vs. Frequency
Figure 56. Supply Current vs. Temperature
800 600 400 AD8599 5V VSY 15V
6.0
AD8597
5.5 VSY = 15V
AMPLITUDE (nV)
200
ISY (mA)
0 -200 -400 -600
06274-053
5.0
VSY = 5V
4.5
06274-075
-800
0
1
2
3
4 5 6 TIME (Seconds)
7
8
9
10
4.0 -40
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE (C)
Figure 54. Peak-to-Peak Noise
Figure 57. Supply Current vs. Temperature
Rev. B | Page 14 of 20
06274-020
-160 100
5.0 -50
AD8597/AD8599 FUNCTIONAL OPERATION
INPUT VOLTAGE RANGE
The AD8597/AD8599 are not rail-to-rail input amplifiers; therefore, care is required to ensure that both inputs do not exceed the input voltage range. Under normal negative feedback operating conditions, the amplifier corrects its output to ensure that the two inputs are at the same voltage. However, if either input exceeds the input voltage range, the loop opens and large currents begin to flow through the ESD protection diodes in the amplifier. These diodes are connected between the inputs and each supply rail to protect the input transistors against an electrostatic discharge event and they are normally reverse-biased. However, if the input voltage exceeds the supply voltage, these ESD diodes can become forward-biased. Without current limiting, excessive amounts of current may flow through these diodes, causing permanent damage to the device. If inputs are subject to overvoltage, insert appropriate series resistors to limit the diode current to less than 5 mA maximum. The input stage has two diodes between the input pins to protect the differential pair. Under high slew rate conditions, when the op amp is connected as a voltage follower, the diodes may become forward-biased and the source may try to drive the output. A small resistor should be placed in the feedback loop and in the noninverting input. The noise of a 100 resistor at room temperature is ~1.25 nV/Hz, which is higher than the AD8597/AD8599. Thus, there is a tradeoff between noise performance and protection. If possible, limiting should be placed earlier in the signal path. For further details, see the Amplifier Input Protection...Friend or Foe article at http://www.analog.com/amplifier_input. Because of the large transistors used to achieve low noise, the input capacitance may seem rather high. To take advantage of the low noise performance, impedance around the op amp should be low, less than 500 . Under these conditions, the pole from the input capacitance should be greater than 50 MHz, which does not affect the signal bandwidth. The AD8597/AD8599 amplifiers have been carefully designed to prevent any output phase reversal if both inputs are maintained within the specified input voltage range. If one or both inputs exceed the input voltage range but remain within the supply rails, the op amp specifications, such as CMRR, are not guaranteed, but the output remains close to the correct value.
NOISE AND SOURCE IMPEDANCE CONSIDERATIONS
The AD8597/AD8599 ultralow voltage noise of 1.1 nV/Hz is achieved with special input transistors running at high collector current. Therefore, it is important to consider the total inputreferred noise (eN total), which includes contributions from voltage noise (eN), current noise (iN), and resistor noise (4 kTRS). eN total = [eN2 + 4 kTRS + (iN x RS)2]1/2 where RS is the total input source resistance. This equation is plotted for the AD8597/AD8599 in Figure 58. Because optimum dc performance is obtained with matched source resistances, this case is considered even though it is clear from Equation 1 that eliminating the balancing source resistance lowers the total noise by reducing the total RS by a factor of 2. At a very low source resistance (RS < 50 ), the voltage noise of the amplifier dominates. As source resistance increases, the Johnson noise of RS dominates until a higher resistance of RS > 2 k is achieved; the current noise component is larger than the resistor noise.
100
(1)
TOTAL NOISE (nV/ Hz)
10
TOTAL NOISE RESISTOR NOISE ONLY 1
OUTPUT PHASE REVERSAL
Output phase reversal occurs in some amplifiers when the input common-mode voltage range is exceeded. As the commonmode voltage is moved outside the input voltage range, the outputs of these amplifiers can suddenly jump in the opposite direction to the supply rail. This is the result of the differential input pair shutting down that causes a radical shifting of internal voltages that results in the erratic output behavior.
0.1 10 100 1k 10k SOURCE RESISTANCE ()
Figure 58. Noise vs. Source Resistance
Rev. B | Page 15 of 20
06274-076
AD8597/AD8599
The AD8597/AD8599 are the optimum choice for low noise performance if the source resistance is kept < 1 k. At higher values of source resistance, optimum performance with respect to only noise is obtained with other amplifiers from Analog Devices. Both voltage noise and current noise need to be considered. For more information on avoiding noise from grounding problems and inadequate bypassing, see the AN-345 Application Note, Grounding for Low- and High-Frequency Circuits. For
V+
general noise theory with extensive calculations, see the AN-358 Application Note, Noise and Operational Amplifier Circuits. A good selection table for low noise op amps can be found in AN-940 Application Note, Low Noise Amplifier Selection Guide for Optimal Noise Performance. An interesting note on using one section of a monolithic dual to phase compensate the other section is in the AN-107 Application Note, Active Feedback Improves Amplifier Phase Accuracy.
7 Q36 R18 D1 D31 2 D34 Q18 Q19 D39 D41 D42 Q32 D2 Q27 4 Q28
06247-079
R19
R31
D2 6 OUTPUT
INVERTING - INPUT
VB Q19 Q20
C1
R1 D3 R32
3 NONINVERTING + INPUT
D40
V-
Figure 59. Simplified Schematic
Rev. B | Page 16 of 20
AD8597/AD8599 OUTLINE DIMENSIONS
5.00 (0.1968) 4.80 (0.1890)
4.00 (0.1574) 3.80 (0.1497)
8 1
5 4
6.20 (0.2441) 5.80 (0.2284)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE
1.75 (0.0688) 1.35 (0.0532)
0.50 (0.0196) 0.25 (0.0099) 8 0 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157)
45
0.51 (0.0201) 0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)
3.25 3.00 SQ 2.75
0.60 MAX 0.60 MAX
5 8
0.50 BSC
PIN 1 INDICATOR
TOP VIEW
2.95 2.75 SQ 2.55
EXPOSED PAD
(BOT TOM VIEW)
1.60 1.45 1.30 PIN 1 INDICATOR
4
1
0.90 MAX 0.85 NOM SEATING PLANE
12 MAX
0.70 MAX 0.65 TYP
0.50 0.40 0.30 0.05 MAX 0.01 NOM
1.89 1.74 1.59
Figure 61. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 3 mm x 3 mm Body, Very Thin, Dual Lead (CP-8-2) Dimensions shown in millimeters
ORDERING GUIDE
Model AD8597ACPZ-R2 1 AD8597ACPZ-REEL1 AD8597ACPZ-REEL71 AD8597ARZ1 AD8597ARZ-REEL1 AD8597ARZ-REEL71 AD8599ARZ1 AD8599ARZ-REEL1 AD8599ARZ-REEL71
1
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Package Description 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N]
Package Option CP-8-2 CP-8-2 CP-8-2 R-8 R-8 R-8 R-8 R-8 R-8
101708-B
0.30 0.23 0.18
0.20 REF
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATIONS SECTION OF THIS DATA SHEET.
012407-A
Branding A22 A22 A22
Z = RoHS Complaint Part.
Rev. B | Page 17 of 20
AD8597/AD8599 NOTES
Rev. B | Page 18 of 20
AD8597/AD8599 NOTES
Rev. B | Page 19 of 20
AD8597/AD8599 NOTES
(c)2007-2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06274-0-10/08(B)
Rev. B | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of AD8597ACPZ-R2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X